您好、欢迎来到现金彩票网!
当前位置:ds视讯 > 非线性导航 >

如何判断一个微分方程是线性还是非线性微分方程?!

发布时间:2019-07-13 00:40 来源:未知 编辑:admin

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  展开全部如果一个微分方程中仅含有未知函数及其各阶导数作为整体的一次幂,则称它为线性微分方程。可以理解为此微分方程中的未知函数y是不超过一次的,且此方程中y的各阶导数也应该是不超过一次的。线性微分方程是指关于未知函数及其各阶导数都是一次方,否则称其为非线性微分方程。扩展资料:

  线性方程:在代数方程中,仅含未知数的一次幂的方程称为线性方程。这种方程的函数图象为一条直线,所以称为线性方程。可以理解为:即方程的最高次项是一次的,允许有0次项,但不能超过一次。比如ax+by+c=0,此处c为关于x或y的0次项。

  以二阶微分方程为例(高阶的以此类推):经过化简,可以变形为这种形式的称为线性微分方程:P(x)y+Q(x)y+R(x)y=S(x) (其中,P(x),Q(x),R(x),S(x)都是已知的x的函数式)无论如何怎么化简,方程中都带有y或者y的导数的非一次方的微分方程就是非线性微分方程。例如yy=y,虽然y不是一次方,但是我通过等价变形可以变成y(y-y)=0,即y=0或者y-y=0,因为y和y都是一次方,因此他们是线性微分方程。而他们的系数都是常数,所以可以称之为常系数微分方程。再如(sinx)y-y=0,因为y和y的次数都是1(含有x的函数项不算),所以是线;的系数是sinx,因此是变系数常微分方程。再如yy=1,无论如何化简(例如把y除过去),都不能变成y和y次数都是1的形式,因此该方程为非线性微分方程。再加一句:线性微分方程都有解析解,就是可以写成函数解析式y=f(x)的形式。但是非线性微分方程就很难说了。一般来说,部分一阶非线性微分方程有解析解。但是二阶或二阶以上的非线性微分方程很难有解析解。

  所谓的线性微分方程 linear differential differentiation,其中A、只能出现函数本身,以及函数的任何阶次的导函数;B、函数本身跟所有的导函数之间除了加减之外,不可以有任何运算;C、函数本身跟本身、各阶导函数本身跟本身,都不可以有任何加减之外的运算;D、不允许对函数本身、各阶导函数做任何形式的复合运算,例如:siny、cosy、tany、根号y、lny、lgx、y、y、y^x、x^y、、、、、.若不能复合上面的条件,就是非线性方程 nonlinear differential differentiation..

http://green-core.net/feixianxingdaohang/717.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有