您好、欢迎来到现金彩票网!
当前位置:ds视讯 > 非线性 >

求助Matlab线性最小二乘法和非线性最小二乘法有什么区别

发布时间:2019-07-07 23:22 来源:未知 编辑:admin

  以误差的平方和最小为准则来估计非线性静态模型参数的一种参数估计方法。设非线性系统的模型为y=f(x,θ)

  式中y是系统的输出,x是输入,θ是参数(它们可以是向量)。这里的非线性是指对参数θ的非线性模型,不包括输入输出变量随时间的变化关系。在估计参数时模型的形式f是已知的,经过N次实验取得数据(x1,y1),(x2,y1),…,(xn,yn)。估计参数的准则(或称目标函数)选为模型的误差平方和

  由于 f的非线性,所以不能象线性最小二乘法那样用求多元函数极值的办法来得到参数估计值,而需要采用复杂的优化算法来求解。常用的算法有两类,一类是搜索算法,另一类是迭代算法。

  搜索算法的思路是:按一定的规则选择若干组参数值,分别计算它们的目标函数值并比较大小;选出使目标函数值最小的参数值,同时舍弃其他的参数值;然后按规则补充新的参数值,再与原来留下的参数值进行比较,选出使目标函数达到最小的参数值。如此继续进行,直到选不出更好的参数值为止。以不同的规则选择参数值,即可构成不同的搜索算法。常用的方法有单纯形搜索法、复合形搜索法、随机搜索法等。

  迭代算法是从参数的某一初始猜测值θ(0)出发,然后产生一系列的参数点θ(1)、θ(2)…,如果这个参数序列收敛到使目标函数极小的参数点娈,那么对充分大的N就可用θ(N) 作为娈。迭代算法的一般步骤是:

  ④检查停机规则是否满足,如果不满足,则将i加1再从②开始重复;如果满足,则取θ(i)为娈。

  非线性最小二乘法除可直接用于估计静态非线性模型的参数外,在时间序列建模、连续动态模型的参数估计中,也往往遇到求解非线性最小二乘问题。

  如果你的问题是线性的, 你当然选线性程序, 因为线性复杂度低, 解的快

http://green-core.net/feixianxing/650.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有